Elastomeric Connectors

ZEBRA® CARBON and LOW TEMPERATURE CARBON CONNECTORS

FUJIPOLY ZEBRA[®] connectors (see figure 1) have alternating layers of conductive carbon-filled and nonconductive silicone rubber. They make reliable connections by being deflected between contacting surfaces. ZEBRA® connectors are used for connecting any LCD from small displays for watches to large area displays for instruments. Table A shows the different types of ZEBRA® connectors available. Table C shows performance characteristics.

Figure 1 shows the three dimensions of the ZEBRA® connector. When ordering, the three dimensions should be specified within the limits shown in table B.

For best overall performance, ZEBRA® connectors must be ordered and used with a ratio of H/W equal to or greater than 1.5.

T Height

parallel layers of non-conductive and carbon-filled

	LCD Contact Spacing Center-to-Center	Pitch: Sum of the Thickness of an Adjacent Conductive and Non-conductive Layer		Conductive Layers per inch	Individual Conductive and Insulating Layer Thickness		Available Lengths
Series	Minimum	Nominal	Maximum	Minimum	Minimum	Maximum	Maximum
1002	0.015 in.	0.004 in.	0.006 in.	240	0.001 in	0.004 in.	9.0 in.
(CZ410/CZ710)	0.38 mm	0.10 mm	0.15 mm		0.025 mm	0.10 mm	230 mm
2004	0.020 in.	0.007 in.	0.010 in.	140	0.002 in.	0.006 in.	9.0 in.
(CZ418)	0.50 mm	0.18mm	0.25 mm		0.050 mm	0.15 mm	230 mm
2005	0.010 in.	0.002 in.	0.004 in.	500	0.0004 in.	0.0024 in.	9.0 in.
(CZ405/CZ705)	0.25 mm	0.050 mm	0.10 mm		0.010 mm	0.060 mm	230 mm
LT 200	0.015 in.	0.004 in.	0.006 in.	240	0.001 in.	0.004 in.	5.0 in.
(CZ610)	0.38 mm	0.10 mm	0.15 mm		0.025 mm	0.10 mm	127 mm

D'

Figure 1

TABLE A

Measurement	Tolerance (inches/mm)
Length=L	0.157 in. to 2.40 in. $-\pm 0.008$ in
Height=H	0.020 in. to 0.750 in. ± 0.005 in/
Width=W	0.015 in. to 0.039 in. $-\pm 0.002$ in. 0.38 mm to 1.0 mm $-\pm 0.050$ mm 0.040 in. to 0.079 in. $-\pm 0.003$ in. 1.01 mm to 2.0 mm $-\pm 0.076$ mm 0.080 in. to 0.118 in. $-\pm 0.005$ in. 2.01 mm to 3.0 mm $-\pm 0.127$ mm 0.080 in. to 0.118 in. $-\pm 0.005$ in. 1.01 mm to 3.0 mm $-\pm 0.127$ mm

TABLE B

	Temperature Range		Current Carrying Capacity	Resistance Between Layers	
ZEBRA [®] Connectors	Minimum Maximum		0.040" x 0.040" pad		
Carbon	-40°F -40°C	212°F 100°C	0.005 amps	10 ¹² ohms	
Low Temperature LT 200	-85°F -65°C	260°F 125°C	0.005 amps	10 ¹² ohms	

FUJI4POLY

TABLE C

Figure 2 Recommended Height (H) should be 1.5 x Width (W) dimension for minimum force deflection. Maximum Skewness 2% of Height.

ZEBRA® CONNECTOR DIMENSIONS

Figure 2 shows the three dimensions of the ZEBRA[®] connector. When ordering, the three dimensions should be specified within the limits shown in Table B. For best overall performance, ZEBRA[®] connectors must be ordered and used with a ratio of H/W equal to or greater than 1.5. Details show silicone support (left) and insulation barrier (right). Each is available on one or both sides. Configurations may also include support on one side and insulation on the other.

ZEBRA® CONNECTOR INSULATING BARRIER

Description	Insulating Barrier	
Color (one only)	White	
Hardness, Durometer A	30	
Dielectric Strength volts/mil.	500	
Resistance, ohms	10 ¹²	
Insulating Barrier Width (B) in.*	0.002 ± 0.001	
(B) mm	0.050 ± 0.025	

TABLE D *The tolerance of W_1 is equal to the sum of the tolerances of W.

nominal resistance calculation

To calculate the resistance of the ZEBRA[®] connector use the following formulas:

Where: Cw = Contact pad width in inches H = ZEBRA[®] connector height in inches W = ZEBRA[®] connector width in inches

Metric:

 $R = \frac{60 \times H}{E_W \times W}$

Inches:

 $R = \frac{2.37 \times H}{E_W \times W}$

Where:

 $R = Resistance (\Omega)$ $E_W = Electrode Pad width (mm or inches)$ W = Connector width (mm or inches)H = Connector height (mm or inches)

NOMINAL FORCE DEFLECTION - PLAIN ZEBRA® OR INSULATION BARRIER TYPE

ZEBRA[®] connectors should be deflected 5% to 25% of H. To calculate F-Force for deflection, use the following formula:

Where:

$$F = Force (N)$$

$$D = \frac{H - H_1 \times 100 (\%)}{H}$$

$$H = Height of connector (mm or inches)$$

$$H_1 = Deflected height of connector (mm or inches)$$

$$W = Width of connector (mm or inches)$$

 W_1 = Width of ZEBRA portion (mm or inches)

L = *Length of connector (mm or inches)*

Metric:

 $F(N) = 9 \times D \times W \times L \times 9.8 \times 10^{-3}$

Inches:

 $F(N) = 5806 \times D \times W \times L \times 9.8 \times 10^{-3}$

Nominal force deflection - silicone support type

Metric:

 $F(N) = [(9 \times D \times W_1 \times L) + \{2.2 \times D \times (W - W_1) \times L\}] \times 9.8 \times 10^3$

Inches:

 $F(N) = [(5806 \times D \times W_1 \times L) + \{1419 \times D \times (W-W_1) \times L\}] \times 9.8 \times 10^3$

f || J | 5P || J |